Planar graphs with girth at least 5 are $(1,10)$-colorable

Jisu Jeong
KAIST
Joint work with Hojin Choi, Ilkyoo Choi, and Geewon Suh

October 31, 2014

DEFINITION

A graph G is properly k-colorable if the following is possible:

- color all vertices using k different colors
- no two adjacent vertices have the same color

DEFINITION

A graph G is properly k-colorable if the following is possible:

- color all vertices using k different colors
- no two adjacent vertices have the same color

A graph G is properly k-colorable if the following is possible:

- partition $V(G)$ into k parts
- each part has maximum degree at most 0

DEFINITION

A graph G is properly k-colorable if the following is possible:

- color all vertices using k different colors
- no two adjacent vertices have the same color

A graph G is properly k-colorable if the following is possible:

- partition $V(G)$ into k parts
- each part has maximum degree at most 0

A graph G is $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$-colorable if the following is possible:

- partition $V(G)$ into r parts
- each part has maximum degree at most d_{i} for $i \in\{1, \ldots, r\}$

DEFINITION

A graph G is properly k-colorable if the following is possible:

- color all vertices using k different colors
- no two adjacent vertices have the same color

A graph G is properly k-colorable if the following is possible:

- partition $V(G)$ into k parts
- each part has maximum degree at most 0

A graph G is $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$-colorable if the following is possible:

- partition $V(G)$ into r parts
- each part has maximum degree at most d_{i} for $i \in\{1, \ldots, r\}$

Observe that if a graph G is $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$-colorable, then G is $\left(d_{1}+1, d_{2}, \ldots, d_{r}\right)$-colorable.

EXAMPLE

- C_{5} is not 2 -colorable, that is, not $(0,0)$-colorable.
- C_{5} is (0,1)-colorable.
- K_{4} is not 3 -colorable.
- K_{4} is not $(0,1)$-colorable.
- K_{4} is $(1,1)$-colorable.

EXAMPLE

- C_{5} is not 2 -colorable, that is, not $(0,0)$-colorable.
- C_{5} is $(0,1)$-colorable.
- K_{4} is not 3 -colorable.
- K_{4} is not $(0,1)$-colorable.
- K_{4} is $(1,1)$-colorable.

Theorem (Borodin-Ivanova-Montassier-Ochem-Raspaud 2010)

The girth of a graph is the length of a shortest cycle contained in the graph. For every k, there exists a planar graph with girth 6 that is not ($0, k$)-colorable.

KNOWN RESULT

Theorem (Four Color Theorem; Appel-Haken 1977)
Every planar graph is ($0,0,0,0$)-colorable.

KNOWN RESULT

Theorem (Four Color Theorem; Appel-Haken 1977)
Every planar graph is ($0,0,0,0$)-colorable.
Theorem (Cowen-Cowen-Woodall 1986)
Every planar graph is (2,2,2)-colorable.
Theorem (Eaton-Hull 1999, Škrekovski 1999)
For every k, there exists a non-($1, k, k$)-colorable planar graph.

KNOWN RESULT

Theorem (Four Color Theorem; Appel-Haken 1977)
Every planar graph is ($0,0,0,0$)-colorable.
Theorem (Cowen-Cowen-Woodall 1986)
Every planar graph is (2,2,2)-colorable.
Theorem (Eaton-Hull 1999, Škrekovski 1999)
For every k, there exists a non-($1, k, k$)-colorable planar graph.

Naturally, the next line of research is to consider $\left(d_{1}, d_{2}\right)$-coloring.

Theorem (Cowen-Cowen-Woodall 1986)
For every $\left(d_{1}, d_{2}\right)$, there exists a non- $\left(d_{1}, d_{2}\right)$-colorable planar graph.

PROBLEM

Consider the girth condition!!
The girth of a graph is the length of a shortest cycle contained in the graph.

Question

Every planar graph with girth at least g is $\left(d_{1}, d_{2}\right)$-colorable.

Problem (1)

Given $\left(d_{1}, d_{2}\right)$, determine the min $g=g\left(d_{1}, d_{2}\right)$ such that every planar graph with girth g is $\left(d_{1}, d_{2}\right)$-colorable.

Problem (2)

Given $\left(g ; d_{1}\right)$, determine the $\min d_{2}=d_{2}\left(g ; d_{1}\right)$ such that every planar graph with girth g is $\left(d_{1}, d_{2}\right)$-colorable.

KNOWN RESULT

Problem (1)

Given $\left(d_{1}, d_{2}\right)$, determine the min $g=g\left(d_{1}, d_{2}\right)$ such that every planar graph with girth g is $\left(d_{1}, d_{2}\right)$-colorable.

$d_{2} \backslash d_{1}$	0	1	2	3	4	5
0	\times					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5

- Every planar graph with girth at least 6 is (1,4)-colorable.
- \exists non- $\left(d_{1}, d_{2}\right)$-colorable planar graphs with girth 4 for all d_{1}, d_{2}.

KNOWN RESULT

Problem (2)

Given $\left(g ; d_{1}\right)$, determine the $\min d_{2}=d_{2}\left(g ; d_{1}\right)$ such that every planar graph with girth g is $\left(d_{1}, d_{2}\right)$-colorable.

Theorem

For every g and d_{1}, it is known whether $d_{2}\left(g ; d_{1}\right)$ exists or not, except $\left(g ; d_{1}\right)=(5 ; 1)$.

girth	$(0, k)$	$(1, k)$	$(2, k)$	$(3, k)$	$(4, k)$
3	\times	\times	\times	\times	\times
4	\times	\times	\times	\times	\times
5	\times		$(2,6)$	$(3,5)$	$(4,4)$
6	\times	$(1,4)$	$(2,2)$		
7	$(0,4)$	$(1,1)$			
8	$(0,2)$				
11	$(0,1)$				

KNOWN RESULT

Problem (2)

Given $\left(g ; d_{1}\right)$, determine the $\min d_{2}=d_{2}\left(g ; d_{1}\right)$ such that every planar graph with girth g is $\left(d_{1}, d_{2}\right)$-colorable.

Theorem

For every g and d_{1}, it is known whether $d_{2}\left(g ; d_{1}\right)$ exists or not, except $\left(g ; d_{1}\right)=(5 ; 1)$.

girth	$(0, k)$	$(1, k)$	$(2, k)$	$(3, k)$	$(4, k)$
3	\times	\times	\times	\times	\times
4	\times	\times	\times	\times	\times
5	\times	$?$	$(2,6)$	$(3,5)$	$(4,4)$
6	\times	$(1,4)$	$(2,2)$		
7	$(0,4)$	$(1,1)$			
8	$(0,2)$				
11	$(0,1)$				

Question (Montassier-Ochem 2014+)
Is there k where planar graphs with girth 5 are $(1, k)$-colorable?

MAIN THEOREM

Theorem (Choi-Choi-J.-Suh 2014+)
Every planar graph with girth at least 5 is $(1,10)$-colorable.

$d_{2} \backslash d_{1}$	0	1	2	3	4	5
0	\times					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5
\vdots	:			.	:	
10	7	5 or 6	5	5	5	5
11	7	5 or 6	5	5	5	5

MAIN THEOREM

Theorem (Choi-Choi-J.-Suh 2014+)
Every planar graph with girth at least 5 is $(1,10)$-colorable.

$d_{2} \backslash d_{1}$	0	1	2	3	4	5
0	\times					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5
\vdots	:		:	.	:	
10	7	5	5	5	5	5
11	7	5	5	5	5	5

MAIN THEOREM

Theorem (Choi-Choi-J.-Suh 2014+)
Every planar graph with girth at least 5 is $(1,10)$-colorable.

girth	$(0, k)$	$(1, k)$	$(2, k)$	$(3, k)$	$(4, k)$
3	\times	\times	\times	\times	\times
4	\times	\times	\times	\times	\times
5	\times	$?$	$(2,6)$	$(3,5)$	$(4,4)$
6	\times	$(1,4)$	$(2,2)$		
7	$(0,4)$	$(1,1)$			
8	$(0,2)$				
11	$(0,1)$				

MAIN THEOREM

Theorem (Choi-Choi-J.-Suh 2014+)
Every planar graph with girth at least 5 is $(1,10)$-colorable.

girth	$(0, k)$	$(1, k)$	$(2, k)$	$(3, k)$	$(4, k)$
3	\times	\times	\times	\times	\times
4	\times	\times	\times	\times	\times
5	\times	$(1,10)$	$(2,6)$	$(3,5)$	$(4,4)$
6	\times	$(1,4)$	$(2,2)$		
7	$(0,4)$	$(1,1)$			
8	$(0,2)$				
11	$(0,1)$				

MAIN THEOREM

Theorem (Choi-Choi-J.-Suh 2014+)
Every planar graph with girth at least 5 is $(1,10)$-colorable.
Moreover, our proof extends to any surface instead of the plane.

Theorem (Choi-Choi-J.-Suh 2014+)
Given a surface S of Euler genus γ, every graph with girth at least 5 that is embeddable on S is $(1, K(\gamma))$-colorable where $K(\gamma)=\max \{10,4 \gamma+3\}$.

FUTURE WORK

Question

Is there a planar graph with girth at least 5 that is not $(1,4)$-colorable?
Note that there is a planar graph with girth 5 that is not $(1,3)$-colorable.

Question

Is every planar graph with girth at least 5

- $(1,9)$-colorable?
- $(2,5)$-colorable?
- (3, 4)-colorable?

Question

Is every planar graph with girth at least $6(1,3)$-colorable?

Thank you for your attention!

