Planar graphs with girth at least 5 are (1, 10)-colorable

Jisu Jeong

KAIST

Joint work with Hojin Choi, Ilkyoo Choi, and Geewon Suh

October 31, 2014

A graph G is properly k-colorable if the following is possible:

- color all vertices using k different colors
- no two adjacent vertices have the same color

A graph G is properly k-colorable if the following is possible: – color all vertices using k different colors

- no two adjacent vertices have the same color

A graph G is properly *k*-colorable if the following is possible:

- partition V(G) into k parts
- each part has maximum degree at most 0

A graph G is properly k-colorable if the following is possible: - color all vertices using k different colors

- no two adjacent vertices have the same color

A graph G is properly *k*-colorable if the following is possible:

- partition V(G) into k parts
- each part has maximum degree at most 0

A graph G is (d_1, d_2, \ldots, d_r) -colorable if the following is possible:

- partition V(G) into r parts

- each part has maximum degree at most d_i for $i \in \{1, \ldots, r\}$

A graph G is properly *k*-colorable if the following is possible:

- color all vertices using k different colors
- no two adjacent vertices have the same color

A graph G is properly k-colorable if the following is possible:

- partition V(G) into k parts
- each part has maximum degree at most 0

A graph G is $(d_1, d_2, ..., d_r)$ -colorable if the following is possible: - partition V(G) into r parts

– each part has maximum degree at most d_i for $i \in \{1, \ldots, r\}$

Observe that if a graph G is (d_1, d_2, \ldots, d_r) -colorable, then G is $(d_1 + 1, d_2, \ldots, d_r)$ -colorable.

EXAMPLE

- C_5 is not 2-colorable, that is, not (0, 0)-colorable.
- C_5 is (0, 1)-colorable.
- ► K₄ is not 3-colorable.
- K_4 is not (0, 1)-colorable.
- K_4 is (1, 1)-colorable.

EXAMPLE

- C_5 is not 2-colorable, that is, not (0, 0)-colorable.
- C_5 is (0, 1)-colorable.
- ▶ K₄ is not 3-colorable.
- K_4 is not (0, 1)-colorable.
- K_4 is (1, 1)-colorable.

Theorem (Borodin–Ivanova–Montassier–Ochem–Raspaud 2010)

The **girth** of a graph is the length of a shortest cycle contained in the graph. For every k, there exists a planar graph with girth 6 that is not (0, k)-colorable.

Theorem (Four Color Theorem; Appel–Haken 1977) *Every planar graph is* (0, 0, 0, 0)*-colorable.* Theorem (Four Color Theorem; Appel–Haken 1977) *Every planar graph is* (0, 0, 0, 0)*-colorable.*

Theorem (Cowen–Cowen–Woodall 1986) Every planar graph is (2,2,2)-colorable.

Theorem (Eaton-Hull 1999, Škrekovski 1999) For every k, there exists a non-(1, k, k)-colorable planar graph. Theorem (Four Color Theorem; Appel–Haken 1977) *Every planar graph is* (0, 0, 0, 0)*-colorable.*

Theorem (Cowen–Cowen–Woodall 1986) Every planar graph is (2,2,2)-colorable.

Theorem (Eaton-Hull 1999, Škrekovski 1999) For every k, there exists a non-(1, k, k)-colorable planar graph.

Naturally, the next line of research is to consider (d_1, d_2) -coloring.

Theorem (Cowen–Cowen–Woodall 1986) For every (d_1, d_2) , there exists a non- (d_1, d_2) -colorable planar graph. Consider the girth condition!!

The **girth** of a graph is the length of a shortest cycle contained in the graph.

Question

Every planar graph with girth at least g is (d_1, d_2) -colorable.

Problem (1)

Given (d_1, d_2) , determine the min $g = g(d_1, d_2)$ such that every planar graph with girth g is (d_1, d_2) -colorable.

Problem (2)

Given $(g; d_1)$, determine the min $d_2 = d_2(g; d_1)$ such that every planar graph with girth g is (d_1, d_2) -colorable.

Problem (1)

Given (d_1, d_2) , determine the min $g = g(d_1, d_2)$ such that every planar graph with girth g is (d_1, d_2) -colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5

- Every planar graph with girth at least 6 is (1, 4)-colorable.
- ▶ \exists non-(d_1 , d_2)-colorable planar graphs with girth 4 for all d_1 , d_2 .

KNOWN RESULT

Problem (2)

Given $(g; d_1)$, determine the min $d_2 = d_2(g; d_1)$ such that every planar graph with girth g is (d_1, d_2) -colorable.

Theorem

For every g and d_1 , it is known whether $d_2(g; d_1)$ exists or not, except $(g; d_1) = (5; 1)$.

girth	(0, k)	(1, k)	(2, <i>k</i>)	(3, <i>k</i>)	(4, k)
3	×	×	×	×	×
4	×	×	×	×	×
5	×		(2,6)	(3,5)	(4,4)
6	×	(1, 4)	(2,2)		
7	(0,4)	(1, 1)			
8	(0,2)				
11	(0,1)				

KNOWN RESULT

Problem (2)

Given $(g; d_1)$, determine the min $d_2 = d_2(g; d_1)$ such that every planar graph with girth g is (d_1, d_2) -colorable.

Theorem

For every g and d_1 , it is known whether $d_2(g; d_1)$ exists or not, except $(g; d_1) = (5; 1)$.

girth	(0, k)	(1, k)	(2, k)	(3, <i>k</i>)	(4, k)
3	×	×	×	×	×
4	×	×	×	×	×
5	×	?	(2,6)	(3,5)	(4,4)
6	×	(1, 4)	(2,2)		
7	(0,4)	(1, 1)			
8	(0,2)				
11	(0, 1)				

Question (Montassier–Ochem 2014+) Is there k where planar graphs with girth 5 are (1, k)-colorable?

MAIN THEOREM

Theorem (Choi–Choi–J.–Suh 2014+) Every planar graph with girth at least 5 is (1,10)-colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5
÷	:	:	:	:	÷	÷
10	7	5 or 6	5	5	5	5
11	7	5 or 6	5	5	5	5

MAIN THEOREM

Theorem (Choi–Choi–J.–Suh 2014+) Every planar graph with girth at least 5 is (1,10)-colorable.

$d_2 \setminus d_1$	0	1	2	3	4	5
0	×					
1	10 or 11	6 or 7				
2	8	6 or 7	5 or 6			
3	7 or 8	6 or 7	5 or 6	5 or 6		
4	7	5 or 6	5 or 6	5 or 6	5	
5	7	5 or 6	5 or 6	5	5	5
6	7	5 or 6	5	5	5	5
÷	:	:	÷	:	÷	÷
10	7	5	5	5	5	5
11	7	5	5	5	5	5

Theorem (Choi–Choi–J.–Suh 2014+)

Every planar graph with girth at least 5 is (1, 10)-colorable.

girth	(0, k)	(1, k)	(2, k)	(3, k)	(4, <i>k</i>)
3	×	×	×	×	×
4	×	×	×	×	×
5	×	?	(2,6)	(3,5)	(4,4)
6	×	(1, 4)	(2,2)		
7	(0,4)	(1, 1)			
8	(0,2)				
11	(0, 1)				

Theorem (Choi–Choi–J.–Suh 2014+) Every planar graph with girth at least 5 is (1,10)-colorable.

girth	(0, k)	(1, k)	(2, k)	(3, k)	(4, k)
3	×	×	×	×	×
4	×	×	×	×	×
5	×	(1,10)	(2,6)	(3,5)	(4,4)
6	×	(1,4)	(2, 2)		
7	(0,4)	(1,1)			
8	(0,2)				
11	(0,1)				

Theorem (Choi–Choi–J.–Suh 2014+) Every planar graph with girth at least 5 is (1,10)-colorable.

Moreover, our proof extends to any surface instead of the plane.

Theorem (Choi–Choi–J.–Suh 2014+)

Given a surface S of Euler genus γ , every graph with girth at least 5 that is embeddable on S is $(1, K(\gamma))$ -colorable where $K(\gamma) = \max\{10, 4\gamma + 3\}$.

Question

Is there a planar graph with girth at least 5 that is not (1, 4)-colorable? Note that there is a planar graph with girth 5 that is not (1, 3)-colorable.

Question

Is every planar graph with girth at least 5

- ► (1,9)-colorable?
- ► (2,5)-colorable?
- ► (3,4)-colorable?

Question

Is every planar graph with girth at least 6 (1,3)-colorable?

Thank you for your attention!

